AWAKE SURGERY
AND
COGNITIVE MAPPING

Editors
Andrea Talacchi
Massimo Gerosa
INDEX

Preface

5 Awake surgery and cognitive mapping
 P.M. Rossini - M. Gerosa

Original articles

• Part I - Preoperative Planning: Neuroimaging

7 State of the art of presurgical language mapping with functional magnetic resonance imaging and magnetic resonance tractography
 A. Bizzi, L. Cerliani, F. Ferrè, S. Ferraro, G. Castelli

27 Mapping brain pathways with diffusion based tractography: current applications and future developments in neurosurgery
 M. Catani, F. Dell’Acqua, L. Pugliese, M. Thiebaut de Schotten, A. Bizzi

39 Application of magnetoencephalography in neurosurgery
 C. Braun, C. Papadelis

53 Blood oxygen level dependent functional magnetic resonance imaging for presurgical brain mapping
 G. Basso, S. Magon

• Part II - Preoperative Planning: Clinical Assessment

61 Clinical settings for awake surgery
 Critical appraisal of methods, classifications and definitions

75 Rationale for perioperative mapping in brain tumors and epilepsy
 G.A. Ojemann

81 Neuropsychological guidance of approaches in epilepsy surgery
 H. Clusmann, M. Thudium, M. von Lehe

89 Assessment and surgical planning in tumor surgery: the role of neuropsychology
 Preliminary experience
 A. Talacchi, B. Santini, G. Miceli, R. Capasso, A. Monti, B. Trombetti, S. Bertasini, F. Corsini, A. Visca, P. Pernigo, M. Gerosa

95 Co-registration and display of pre-and intraoperative multimodality brain mapping data for surgical decision-making

105 Patient selection for awake surgery: a preliminary report under a psychological perspective
 B. Santini, A. Talacchi, F. Corsini, F. Casagrande, M. Casartelli, B. Trombetti, S. Bertasini, P. Pernigo, F. Procaccio, M. Gerosa

• Part III - Intraoperative Procedures

115 Intraoperative settings for awake surgery: anaesthesiological, neurophysiological and cognitive aspects. Clinical appraisal of methods, classifications and definitions

141 Invasive recordings from human brain
 G.A. Ojemann

147 The impact of modern neurosurgical approaches and extent of resection on patient outcome
 N. Sanai, M.S. Berger
Preface

Awake surgery and cognitive mapping

The volume “Awake surgery and cognitive mapping” is stemming from an International meeting recently held in the magnificent frame of the city of Verona, which was chaired by two top names of the clinical and basic neurosciences like Prof. Gerosa and Caramazza. The preparation of the book was followed with enthusiasm and dedication by Prof. Talacchi from the Department of Neurosurgery of the University of Verona. The treated arguments include all the hot topics of modern research on brain function, including mapping procedures, brain plasticity, cognitive and learning mechanisms and computational neuroscience for modelling brain organization. All the most advanced technologies for structural and functional brain exploration are treated by major experts, including those for intraoperative neuronavigation, cortical mapping of at-risk areas for surgical planning and execution, fiber dissection technique in combination with magnetic resonance imaging methods for tractography. Brain function has been investigated with integrated methods including different types of cortical stimulation and recording procedures, neurometabolic techniques and neurophysiological devices, including the most updated forms of computerized analysis with dedicated software and algorithms. Main neurosurgical procedures are analysed as well as their clinical aspects mainly dealing with neuropsychological perspectives. The excellent level of the contributors and speakers has been furtherly enriched by three discussants who provided their written support to this volume, namely Prof. Bizzi, Prof. Sawaya and Prof. Luders. I am pretty confident that the reader who is interested to these themes will enjoy the way they are exposed and developed and the high level of all the contributions.

Paolo M. Rossini
Professor of Neurology, University Campus Bio-Medico, Rome
President-elect of the International Federation of Clinical Neurophysiology

In 1861, M.P. Broca, reporting of a case of “aphemie” (aphasia), first described the famous cortical region, defined as “La siege de la faculté du langage articulé”.

During the following 150 years, anatomo-physiological studies have convincingly shown that the mentioned posterior portion of the left inferior frontal gyrus in the dominant hemisphere (i.e. areas 44 & 45) currently accounts for a spectrum of additional functions, from music perception (Maess B. et al., 2001) to motor functions as well as working memory processes (Binkofski F. et al., 2004). Moreover, distinctive cytoarchitectonic markers of this region have been identified: the presence of a granular (area 45) or dysgranular (area 44) layer IV, characterized by large pyramidal cells (Schleicher A. et al., 1990) and Amunts K.

Correspondence: Prof. Massimo Gerosa, Department of Neurosurgery, University Hospital, piazzale Stefani 1, 37126 Verona (VR), Italy, ph. +39-45-8123487, fax +39-45-8122939, e-mail: massimo.gerosa@univr.it

ISSN: 2037-0091.

“Awake surgery and cognitive mapping”, editors A. Talacchi and M. Gerosa
Copyright © 2009 by new Magazine edizioni s.r.l., via dei Mille 69, 38122 Trento, Italy. All rights reserved. www.topicsmedicine.com
The relevance of this complex in the domain of language has been further stressed recently-acquired knowledge on the role of mirror and of canonical neurons to this regard (Rizzolatti G. et al., 2002\(^{(6)}\)) as well as by the fact that the neighbouring area 6, agranular, has been shown to be responsible for oro-laryngeal movements (Rizzolatti G. et al., 2006\(^{(7)}\) and Lindenberg R. et al., 2007\(^{(8)}\)).

Similar considerations may easily explain the limited role that has been traditionally conceived for surgical procedures within the borders of Broca’s district, particularly whenever conducted under general anaesthesia, with no real-time monitoring of the speech network.

During the last decade the relevance of awake surgery has gained increasing momentum in the treatment planning both of crucially located brain tumors and in drug-resistant, surgically manageable epilepsy. Originally, the rationale of this approach was to provide the most reliable perioperative monitoring of highly functional regions, in order to maximize radicality, while minimizing the risks for the surrounding functional cortex, thereby improving patients’ quality of life (Ojemann G.A., 2003\(^{(9)}\)). Widespread efforts of multidisciplinary teams have gradually expanded the main potentials of the technique in terms of language mapping, verbal and visual-spatial memory (Savazzi S. et al., 2008\(^{(10)}\)), neuropsychological staging, and cognitive parameterisation.

Additional, reachable goals have been targeted, including the identification of patients at risk for intraoperative mapping failure, optimisation of resources, and improvement of the cost-benefit ratio.

This volume, as well as the parental meeting held in Verona, September 2008, actually represents a further tribute to such an impressive on-going investigation.

As stressed by several Authors, the rapidly-increasing amount of knowledge in this peculiar branch of neuro-physiology, may presumably result on the one side from the extensive regimen of preoperative planning (see also: Rigolo L. et al. and Talacchi A. et al.), including clinical-neuropsychological evaluation standards (see Clusmann H. et al. and Santini B. et al.), multimodality integrated neuro-imaging - functional magnetic resonance and Diffusion Tensor Imaging (DTI), Positron Emission Tomography (PET) scan, neuronavigation, etc. (see Bizzi A. et al., Catani M. et al. and Basso G. et al.), and magneto-encephalography (see Braun C. and Papadelis C.).

On the other, by more and more advanced intraoperative settings, ranging from sophisticated anesthesiological approaches (see Ferri E. et al.), to dedicated neuro-psychological frameworks aimed at analysing even minimal pre-postoperative variations, to advanced panel of electrocortical mapping (see Lubrano V. and Roux F.-E., and Bertrand J.-A. et al.), up to single-neuron recordings (see Ojemann G.A.).

Finally, it is probably worth stressing that, as illustrated by Sanai N. and Berger M.S., a comprehensive literature review of the last two decades (1990 - to date) shows that the greater degree of resection allowed by these techniques leads to increased survival for patients with high grade gliomas, but may also delay the malignant transformation of low grade tumors. An extreme confirmation that this field of research, as a whole, adequately fulfills Harvey Cushing’s definition of the leading goal in neurosurgical activity: patient first.

REFERENCES